
F1: A FAST AND 
PROGRAMMABLE 

ACCELERATOR FOR FULLY 
HOMOMORPHIC ENCRYPTION

1/12/2022

NICK GENISE

WORK DONE AT SRI INTERNATIONAL

JOINT WITH AXEL FELDMANN, NIKOLA SAMARDZIC, ALEKSANDAR KRASTEV, SRINI DEVADAS, RON DRESLINSKI, 
KARIM ELDEFRAWY, CHRISTOPHER PEIKERT, DANIEL SANCHEZ

FUNDED BY DARPADPRIVE

1



FULLY HOMOMORPHIC ENCRYPTION (FHE)

Example, a patient encrypts their symptoms, and the 
function is a medical diagnosis.

encrypted

Computer 
w/out key!

2



A SHORT HISTORY OF FHE

1978: Rivest, Adleman, and Dertouzospropose “privacy homomorphism”. Ὁὲὧά ᵐ
ὉὲὧὪά . 

2009: Gentry finds the first fully homomorphic encryptionscheme. Bases it on a 
lattice-based hardness assumption.

2011: Brakerski, Gentry, and Vaikuntanathanpropose an FHE scheme based on the 
popular (Ring) Learning with Errors problem.

Today: FHE was 100,000x slower than unencrypted computation, but recent efforts 
are speeding this up using application specific integrated circuit (ASICs).

3



(R)LWE
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LEARNING WITH ERRORS (LWE)

Let ὲᶰᴓbe in the hundreds, ήa function of ὲ, and …be a “small” distribution over 
ᴚ .

In 2005, Regev showed the following distribution is pseudorandom assuming worst-
case lattice problems are hard for quantum computers:

╪ȟ╪ȟ▼ Ὡ .

where ╪ᴺלᴚ are uniformly random vectors, Ὡᴺ…, ▼N …

Search version: can you recover ▼given noisy inner-products?
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LEARNING WITH ERRORS (LWE), ENCRYPTION SCHEME

Key Gen. : ═ᴺᴚ for ά ὲͯὰέὫή , ▼as before and ▄N …

pk = ═ȟ═▼ ▄ ═ȟ╫, sk= ▼.

Enc(m): Sample a random binary vector ◊and return

ct := ◊◄═ȟ◊◄╫ ά= ╬ȟὧ

where is a scaling, decoding factor.

Dec(ct, sk):ὧ ▼◄╬ ά. Can recover message if  noise.

Note, linearly-homomorphic! (with growing noise)
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RING LEARNING WITH ERRORS (RLWE)

Problem with LWE: The public keys are huge! Roughly —‗ὰέὫ‗ bits.

In 2009, partially motivated by Gentry’s FHE breakthrough, Lyubashevsky, Peikert, and 
Regev proved a more compact version of LWE is secure assuming the hardness of 
worst-case problems on ideal lattices.

Eventual result: efficient lattice-based encryption and a base scheme for FHE!
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RING LEARNING WITH ERRORS (RLWE), ENCRYPTION 
SCHEME

Polynomials: Ὑ ḧ ᴚ ὼȾὼ ρwhere ὔ ς ρπςτ.

…is a distribution over Ὑ by the sampling the same distribution over polynomial 

coefficients.

Key Gen: ὥᴺὙ and ίȟὩN …

pk = ὥȟὥίὩ ὥȟὦ, sk= ί.

Enc(m): Sample a random binary polynomial όand return

ct := όὥȟόὦ ά= ὧȟὧ ᶰὙ Ὑ

where is a scaling, decoding factor.

Note, linearly-homomorphic! (with growing noise) 8



BGV
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ENCRYPTION AND DECRYPTION

A BGV encryption is an RLWE encryption with the message in the “least sig. bits:”

Plaintext space = Ὑ ᴚ ὼȾὼ ρ

Ὁ ά Ὁὲὧά : ÃÔ ὧȟὧ ὥίὴὩάȟὥᶰὙ Ὑ

ὴḺήwith the former prime in ᴚ

Note: ὧ ὧίάέὨή ὴὩά
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HOMOMORPHIC ADDITION

Ὁ ά Ὁ άᴂ Ὁ ά άᴂ

ὧȟὧ ὧᴂȟὧᴂ ὥ ὥί ὴὩ Ὡ άȟὥ ὥᴂ

Noise magnitude grows by ͯρbit.
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HOMOMORPHIC MULTIPLICATION

Idea: view through the decryption equation, ὴὩά ὧ ὧίάέὨή. Then,

άά ὴÓÍÁÌÌὧὧ ίὧὧ ὧὧ ίὧὧάέὨή.

Or, ὧὧ, ὧὧ ὧὧ, ὧὧ) encrypts άάᴂunder ρȟίȟί Ȣ

We use an encryption of ίto “Relinear-ize” back to an encryption under ί!

Noise size squares (new noise ὩὩᴂaka double the noise bits)!
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POLYNOMIALS/DATA TYPES: CRT ON COEFFICIENTS

So far, we’ve ignored the structure of the modulus ή.

In practice, we take ή ήήỄήwhere each ήis a distinct prime of machine-size 
(32 or 64 bits). 

Then, we can represent a coefficient of a polynomial in Ὑ via the Chinese remainder 

theorem: ᴚ ḙᴚ ᴚ Ễ ᴚ via

ὼɴ ᴚȟ ὅὙὝὼ ὼάέὨήȟὼάέὨήȟȣȟὼάέὨή

Addition and multiplication in-parallel!
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POLYNOMIALS/DATA TYPES: CRT (NTT) ON POLYNOMIALS

Using the CRT on coefficients allows us to represent Ὑ as 

Ὑ ḙὙ Ὑ Ễ Ὑ

What about each Ὑ ᴚ ὼȾὼ ρ?

Do the FFT!

The FFT modulo a prime number is called the NTT (number-theoretic 
transform).
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POLYNOMIALS/DATA TYPES: CRT (NTT) ON POLYNOMIALS 
CONT.

If each ήḳράέὨςὔ, then ᴚ contains a multiplicative subgroup of size ςὔwhich 

is the roots of ὼ ρ(ςὔ-th roots of unity).

The NTT is the evaluation at all ὔof these points:

ὪᶰὙ , ὔὝὝὪ ὪȟὪ ȟȣȟὪ .

Addition and multiplication over Ὑ in in-parallel!

Just like the FFT, the roots of unity allow us to compute this in time ὕὔẗÌÏÇὔ .
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CRT AND NTT: MAIN POINTS

CRT allows us to represent ὪᶰὙ as ὒpolynomials in 

Ὑ Ὑ Ễ Ὑ Ȣ

NTT allows to represent Ὑ as ᴚ .

This is the “double-CRT” form. It allows polynomial addition and multiplication to be 
done in parallel over finite fields.

aǳŎƘ ƻŦ ǘƘŜ ƻǾŜǊƘŜŀŘ ƛƴ όǎƻŦǘǿŀǊŜύ CI9 ƛǎ ŎƻƳǇǳǘƛƴƎ ŦƻǊǿŀǊŘ ŀƴŘ ƛƴǾŜǊǎŜ b¢¢ΩǎΦ 
This is because most operations require us to switch between NTT form and 
coefficient form.
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PLAINTEXT SLOTS

The same idea applies to ὴ. That is, if ὴḳράέὨςὔ, then the NTT can be applied to 
the plaintext space Ὑ ḙᴚ .

We call this a “packed” ciphertext since each ct can encrypt ὔelements in ᴚ . Each 

plaintext element is in a plaintext “slot.”

For large computations, we need cross-talk between slots. This is done by signed 
permutations (automorphisms) on the ct polynomials. Note, these automorphisms are 
transitive on the slots.

„ὥίὴὩά „ὥ„ί ὴ„Ὡ „ά .

Encryption under the wrong key! Need to key-switch again :/.
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GENERAL CASE FOR PLAINTEXT SLOTS, POWER OF 
TWO DIMENSION

Let ὴbe a prime not equal to ς. Then ὼ ρfactors into irreducible 
polynomials of the same degree, d,over the finite field ᴚ !

ὼ ρ

ᶰ ȟȣȟ

Ὂὼ

The degree Ὠis the smallest number s.t.ὴḳράέὨςὲȢThen ςὲ ὰὨ.
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WHAT ARE THE GENERAL SLOTS?
Our old friend, the Chinese Remainder Theorem, gives us the answer:

Ὑ
ᴚ ὼ

ὼ ρ
ḙ
ᴚ ὼ

Ὂ ὼ
ṧ
ᴚ ὼ

Ὂ ὼ
ṧỄṧ

ᴚ ὼ

Ὂὼ
ḙὋὊὴ

This map is given by evaluating a polynomial in Ὑ by a root of each polynomial. Let 
– be a root to Ὂ ὼ and ‖be distinct coset representatives of ᴚᶻȾὴ. 

Ὢὼᵐ Ὢ– ȟὪ– ȟȣȟὪ–

This can be done with a DFT over a finite field! 
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COMPARISON: NTT V.S. GENERAL
NTT: When ήḳράέὨςὲ, ὼ ρ Бᶰ ȟȟȣȟ ὼ  splits completely into 

degree-1 factors. Then,

Ὑ
ᴚ ὼ

ὼ ρ
ḙ
ᴚ ὼ

ὼ 
ṧ
ᴚ ὼ

ὼ 
ṧỄṧ

ᴚ ὼ

ὼ 
ḙᴚ

General: When ὴis a prime not equal to 2, ὼ ρ Бᶰ ȟȣȟὊὼ factors into 

same-degree irr. polynomials and 

Ὑ
ᴚ ὼ

ὼ ρ
ḙ
ᴚ ὼ

Ὂ ὼ
ṧ
ᴚ ὼ

Ὂ ὼ
ṧỄṧ

ᴚ ὼ

Ὂὼ
ḙὋὊὴ
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PLAINTEXT SLOTS: MAIN POINTS

We apply signed permutations to enable plaintext “cross-talk.” Usuallywe 
pick ‖so these are rotations on the slots.

After each permutation, we need to do a key-switching operation (usually 
represented as a matrix-vector multiply).

Key-switching cannot by done in NTT form (evaluation rep.).
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THE FHEINTERFACE (SERVER SIDE)

Ciphertext Add: Add the polynomials άέὨή, ὧȟὧ ὧᴂȟὧᴂ.

Ciphertext Multiply : Compute ὧὧ, ὧὧ ὧὧ, ὧὧ) then relinearizeto ὧᴂᴂȟὧᴂᴂ.

Ciphertext Rotate: Compute „ὧ ȟ„ὧ then key-switch.
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ACCELERATING FHE WITH ASICS (F1)
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CHALLENGES TO 
ACCELERATING 

You want a chip that:

1. stores multiple ciphertexts and hints,

2. accelerates FHE operations like ADD, MULT, and 
ROTATE,

3. reduces bottlenecks to data-movement or high re-use,

4. with few functional units with high throughput.  
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OVERVIEW OF F1

Small Design: 151 άά

Large scratch pad: φτὓὄ

Compute clusters with FUs for NTT, 
mod mult, mod add, and 
automorphism. 

Each FU operates on an RNS 
polynomial, or a (1K-16K) vector of 24-
bit values.

Note, for ὔ ρφὑ, ὒ ρφ, then a ct
is ςὓὄ. (A KSH is σςὓὄ.)
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NTT-FRIENDLY MONTGOMERY MULTIPLIERS

Recall that the RNS moduli, ή, are of the form ήḳράέὨςὔ.

We use a Word-Level Montgomery multiplier, word size ~11 bits, for our modular multipliers.

This algorithm was initially used by Can Mert, Ozturk, and Savasin accelerating NTTs using 
FPGAs. (eprint) 

We modify it to ήs.t.ήḳ ράέὨς . This allows us to remove one multiplier and save area 
and power.
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4 STEP NTT

Recall, the NTT is an FFT for modular arithmetic. Given ὪᶰὙȾήὙ, compute 

ὔὝὝὪ ὪȟὪ ȟȣȟὪ

where is a primitive ςὔth root of unity mod ή. 

We do both the forward and inverse NTT with the same hardware. This is by using a 4 Step NTT and mixing DIT and DIF 
butterflies. Our NTT is only for Ὁ ρςψelements. So, we reduce all NTT to 128-point NTTs.
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AUTOMORPHISM FUNCTIONAL UNITS

Each automorphism is „Ὢὼ ᵐὪὼ for some Ὥɴ ᴚᶻ (odd). 

The automorphisms form a group and are generated by Ὥ ρand Ὥ σ.

Standard hardware approaches fail! A general ρφὑpermutation is too complex.

Our functional unit reduces to how an automorphism acts on a degree Ὁ ρςψsubfield and the basis. For 
example, in ὔ ςυφ, we have Ὢὼ Ὢὼ ὼὪὼ . (Basis is ρȟὼ here.)

„Ὢὼ „Ὢὼ „ὼ„Ὢὼ
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AUTOMORPHISM FUNCTIONAL UNIT
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PERFORMANCE AND FUTURE WORK

F1 Accelerates FHE programs by compared to software solutions run on a standard 
CPU.

Future work: accelerate more complex FHE operations (e.g., key-switching), focus on bootstrapping, and 
accelerate FHEW/TFHE schemes. (F1 is best used on BGV, BFV, and CKKS.)
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THANK YOU!
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